Open Access
Issue
Sust. Build.
Volume 2, 2017
Article Number 4
Number of page(s) 16
Section Passive and Active Hybrid Approach to Building Designs
DOI https://doi.org/10.1051/sbuild/2017003
Published online 03 May 2017
  1. F. Ardente, M. Beccali, M. Cellura, M. Mistretta, Energy and environmental benefits in public buildings as a result of retrofit actions, Renew. Sustain. Energy Rev. 15, 460 (2011) [CrossRef]
  2. M. Economidou, B. Atanasiu, C. Despret, J. Maio, I. Nolte, O. Rapf, Europe's Buildings under the Microscope, in A Country-by-Country Review of the Energy Performance of Buildings, Build. Perform. Inst. Eur. BPIE (2011)
  3. C.-H. Baek, S.-H. Park, Changes in renovation policies in the era of sustainability, Energy Build. 47, 485 (2012) [CrossRef]
  4. Z. Ma, P. Cooper, D. Daly, L. Ledo, Existing building retrofits: methodology and state-of-the-art, Energy Build. 55, 889 (2012) [CrossRef]
  5. EP, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (2010)
  6. European Council, Appendix: European Council Action Plan (2007–2009), in Bruss. Eur. Counc. 89 March 2007 Pres. Conclus, Bruxelles (2007)
  7. R. Roda, C. Monti, BolognaFiere, Salone internazionale dell'industrializzazione edilizia, in Costruire sostenibile: il Mediterraneo: 2001, Alinea, Firenze (2001)
  8. R. Banham, The architecture of the well-tempered environment (Architectural P, London, 1969)
  9. E. De Oliveira, S. Yannas, Energy and buildings for temperate climates: a Mediterranean regional approach, in Proc. Sixth Int. Plea Conf. Porto Portu. (1989)
  10. F. Calcerano, C. Cecchini, Passive cooling strategies in refurbishment of Mediterranean buildings: simulation analysis of thermal mass and natural ventilation combination, in Proc. 2nd IBPSA Italy Conf., 4–6 February, BSA 2015, Bozen, Bolzano, Italy (2015)
  11. EC, Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings, 2002
  12. A. Prada, P. Baggio, M. Baratieri, P. Romagnoni, A. Gasparella, E. Bettanini, Consumi energetici e certificazione energetica: situazione estiva ed invernale in Italia e in Europa, in Energ. Lo Sviluppo Sostenibile, Dario Flaccovio Editore, Palermo (2008), pp. 1–6
  13. M. D'Orazio, C. Di Perna, E. Di Giuseppe, The effects of roof covering on the thermal performance of highly insulated roofs in Mediterranean climates, Energy Build. 42, 1619 (2010) [CrossRef]
  14. L. Tronchin, K. Fabbri, Energy performance building evaluation in Mediterranean countries: comparison between software simulations and operating rating simulation, Energy Build. 40, 1176 (2008) [CrossRef]
  15. M. Santamouris, D. Asimakopoulos, Passive cooling of buildings (James & James Ltd, London, 1996)
  16. O.-H. Kwon, M.-H. Kim, A.-S. Choi, J.-W. Jeong, Energy saving potential of a hybrid ventilation system integrated with heat storage material, Energy Build. 57, 346 (2013) [CrossRef]
  17. P. Heiselberg, Principles of hybrid ventilation (Aalborg University, Aalborg, Denmark, 2002)
  18. IEA, IEA ECES Energy Conservation through Energy Storage (2012)
  19. B. Moujalled, R. Cantin, G. Guarracino, Comparison of thermal comfort algorithms in naturally ventilated office buildings, Energy Build. 40, 2215 (2008) [CrossRef]
  20. R.J. de Dear, G.S. Brager, Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energy Build. 34, 549 (2002) [CrossRef]
  21. J.F. Nicol, M.A. Humphreys, B.W. Olesen, A stochastic approach to thermal comfort – occupant behavior and energy use in buildings, in Tech. Symp. Pap. – 2004 Annu. Meet. Am. Soc. Heat. Refrig. Air-Cond. Eng. Nashv., TX, USA, 26–30 June 2004, Code 6500 (2004)
  22. O. Seppänen, W.J. Fisk, Association of ventilation system type with SBS symptoms in office workers, Indoor Air 12, 98 (2002) [CrossRef]
  23. J.E. Braun, Load control using building thermal mass, J. Sol. Energy Eng. 125, 292 (2003) [CrossRef]
  24. L. Stephan, A. Bastide, E. Wurtz, B. Souyri, Ensuring desired natural ventilation rate by means of optimized openings, in Proc. 11th Int. IBPSA Conf. – Build. Simul. 2009 BS 2009 Glasg., UK, July 2007 (2007)
  25. G. Augenbroe, Trends in building simulation, Build. Environ. 37, 891 (2002) [CrossRef]
  26. J.L.M. Hensen, Towards more effective use of building performance simulation in design, in Proc. 7th Int. Conf. Des. Decis. Support Syst. Archit. Urban Plan., 2–5 July Eindh, edited by J.P. Leeuwen, H.J.P. Van Timmermans (Eindh. Univ. Technol., 2004)
  27. N. Lechner, Heating, cooling, lighting: sustainable design methods for architects (John Wiley & Sons, Hoboken, NJ, 1991)
  28. T. Herzog, Deutsches Architekturmuseum, Thomas Herzog: Architektur + Technologie = architecture + technology (Prestel, Munchen, New York, 2002)
  29. S. Attia, M. Hamdy, W. O'Brien, S. Carlucci, Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design, Energy Build. 60, 110 (2013) [CrossRef]
  30. ECES (Energy Conservation Through Energy Storage Programme), Annual Report, IEA (International Energy Agency), 2012
  31. J. Karlsson, Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort (Div. of Building Materials LTH, Lund University, 2012), http://lup.lub.lu.se/record/2518432 (accessed on: 2014/18/02)
  32. Y. Li, P. Xu, Thermal mass design in buildings – heavy or light? Int. J. Vent. 5, 143 (2006) [CrossRef]
  33. C.A. Balaras, The role of thermal mass on the cooling load of buildings. An overview of computational methods, Energy Build. 24, 1 (1996) [CrossRef]
  34. International PLEA Conference, International PLEA Organisation, Energy and buildings for temperate climates: a Mediterranean regional approach, in Proceedings of the Sixth International PLEA Conference, Porto, Portugal, 27–31 July 1988 (Published on behalf of the International PLEA Organisation by Pergamon Press, Oxford, New York, 1989), 1st ed.
  35. S. Szokolay, Passive and low energy design for thermal and visual comfort, in Passive Low Energy Ecotechniques, Proc. Third Int. PLEA Conf. Mex. City Mex., 6–11 August 1984 (1985), pp. 11–28
  36. C. Diakaki, E. Grigoroudis, N. Kabelis, D. Kolokotsa, K. Kalaitzakis, G. Stavrakakis, A multi-objective decision model for the improvement of energy efficiency in buildings, Energy 35, 5483 (2010) [CrossRef]
  37. C.A. Balaras, K. Droutsa, E. Dascalaki, S. Kontoyiannidis, Heating energy consumption and resulting environmental impact of European apartment buildings, Energy Build. 37, 429 (2005) [CrossRef]
  38. M. Grosso, Il raffrescamento passivo degli edifici: concetti, precedenti architettonici, criteri progettuali, metodi di calcolo e casi di studio (Maggioli, Rimini, 1997)
  39. F. Tucci, Atlante dei sistemi tecnologici per l'architettura bioclimatica: ventilazione naturale negli edifici/Atlas of Technological Systems for Bioclimatic Architecture (Natural ventilation, Alinea Editrice, Firenze, 2012)
  40. F. Allard, Natural ventilation in buildings: a design handbook (James & James Ltd, London, 1998)
  41. T. Chenvidyakarn, Buoyancy effects on natural ventilation (Cambridge University Press, Cambridge, 2013) [CrossRef]
  42. P.F. Linden, The fluid mechanics of Natural Ventilation, Annu. Rev. Fluid Mech. 31, 201 (1999) [CrossRef]
  43. C.C. Siew, A.I. Che-Ani, N.M. Tawil, N.A.G. Abdullah, M. Mohd-Tahir, Classification of natural ventilation strategies in optimizing energy consumption in Malaysian office buildings, Procedia Eng. 20, 363 (2011) [CrossRef]
  44. C.M. Mak, J.L. Niu, C.T. Lee, K.F. Chan, A numerical simulation of wing walls using computational fluid dynamics, Energy Build. 39, 995 (2007) [CrossRef]
  45. A. Aldawoud, R. Clark, Comparative analysis of energy performance between courtyard and atrium in buildings, Energy Build. 40, 209 (2008) [CrossRef]
  46. N. Baker, M. Standeven, PASCOOL − Comfort Group − Final Report, 1995
  47. A. Mahdavi, C. Pröglhöf, A model-based method for the integration of natural ventilation in indoor climate systems operation, in Proc. 9th Int. IBPSA Conf., BS 2005 Montr. Can., 15–18 August 2005 (2005)
  48. F. Calcerano, C. Cecchini, Mediterrean building refurbishment: thermal mass and natural ventilation simulated control, in Proc. 5th Ger. – Austrian IBPSA Conf. BAUSIM 2014 Hum. Centered Build., 22–24 Sept. 2014, Aachen, Ger. (2014), p. 8
  49. B. Givoni, Effectiveness of mass and night ventilation in lowering the indoor daytime temperatures. Part I: 1993 experimental periods, Energy Build. 28, 25 (1998) [CrossRef]
  50. V. Corrado, I. Ballarini, S.P. Corgnati, N. Talà, Building Typology Brochure – Italy (Fascicolo sulla Tipologia Edilizia Italiana, 2012)
  51. L.D. Decanini, L. Liberatore, F. Mollaioli, Damage suffered by RC buildings during the 2009 L'Aquila earthquake, a general overview and a case study, in Proc. 14th Eur. Conf. Earthq. Eng. (2010)
  52. L. Sorrentino, E. Raglione, D. Liberatore, L.D. Decanini, Chiesa di San Biagio D'Amiternum a L'Aquila (Catalogo sismico locale e meccanismi di collasso, Textus, L'Aquila, 2011)
  53. M. Pasca, Il costruito italiano: tipologie, problematiche, interventi pre e post sisma, Tafter J. Esperienze E Strum. Cult. E Territ. (2012)
  54. F. Calcerano, L. Martinelli, Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption, Energy Build. 112, 234 (2016) [CrossRef]
  55. G. Lopardo, Un modello matematico di termoregolazione del corpo umano (Università degli studi di Salerno – Dipartimento di Ingegneria Meccanica, 2011), http://elea.unisa.it:8080/handle/10556/219 (accessed on: 2014/16/05)
  56. R. de Dear, G.S. Brager, Developing an adaptive model of thermal comfort and preference, Cent. Built Environ. (1998), http://escholarship.org/uc/item/4qq2p9c6 (accessed on: 2016/30/05)
  57. S.P. Corgnati, E. Fabrizio, M. Filippi, The impact of indoor thermal conditions, system controls and building types on the building energy demand, Energy Build. 40, 627 (2008) [CrossRef]
  58. R.H. Henninger, M.J. Witte, EnergyPlus Testing with ASHRAE 1052-RP Toolkit – Building Fabric Analytical Tests (Lawrence Berkeley Natl. Lab., USA, 2011)
  59. C. Morbitzer, Towards the integration of simulation in the Building Design Process, PHD thesis, Energy System Research Unit, University of Strathcylde, 2003
  60. J.A. Clarke, Energy simulation in building design (Butterworth-Heinemann, Oxford, 2001)
  61. Q. Chen, Ventilation performance prediction for buildings: a method overview and recent applications, Build. Environ. 44, 848 (2009) [CrossRef]
  62. J. Hensen, Integrated building airflow simulation, in Adv. Build. Simul. (Spon Press, New York and London, 2003)
  63. A. Foucquier, F. Suard, S. Robert, L. Stephan, A. Jay, State of the art in building modelling and energy performances prediction: a review, Renew. Sustain. Energy Rev Renew. Sustain. Energy Rev. 23, 272 (2013) [CrossRef]
  64. R. Ramponi, B. Blocken, CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters, Build. Environ. 53, 34 (2012) [CrossRef]
  65. NREL, Energyplus Input Output Reference (2013), http://apps1.eere.energy.gov/buildings/energyplus/pdfs/inputoutputreference.pdf
  66. P. Cesaratto, M. De Carli, Studio comparativo tra fabbisogni energetici netti, lato edificio, sia per la climatizzazione estiva che per quella invernale di edifici residenziali e del settore terziario situati in climi differenti (ENEA, Roma, 2010), http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/fabbisogni-consumi-energetici/4-univ-pd-ob-b-1.pdf (accessed on: 2014/16/05)
  67. S. Sibilio, M. D'Agostino, M. Fatigati, M. Citterio, Valutazione dei consumi nell'edilizia esistente e benchmark mediante codici semplificati: analizi di edifici residenziali (ENEA, Roma, 2009)
  68. P. Caputo, G. Costa, V. Zanotto, Rapporto sulla validazione del modulo edificio – sistema elettrico (2011)
  69. M. Krzywinski, J.E. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, M.A. Marra, Circos: an information aesthetic for comparative genomics (Genome Res Publ. Adv., 2009)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.