Open Access
Issue
Sust. Build.
Volume 2, 2017
Article Number 4
Number of page(s) 16
Section Passive and Active Hybrid Approach to Building Designs
DOI https://doi.org/10.1051/sbuild/2017003
Published online 03 May 2017
  1. F. Ardente, M. Beccali, M. Cellura, M. Mistretta, Energy and environmental benefits in public buildings as a result of retrofit actions, Renew. Sustain. Energy Rev. 15, 460 (2011) [CrossRef] [Google Scholar]
  2. M. Economidou, B. Atanasiu, C. Despret, J. Maio, I. Nolte, O. Rapf, Europe's Buildings under the Microscope, in A Country-by-Country Review of the Energy Performance of Buildings, Build. Perform. Inst. Eur. BPIE (2011) [Google Scholar]
  3. C.-H. Baek, S.-H. Park, Changes in renovation policies in the era of sustainability, Energy Build. 47, 485 (2012) [CrossRef] [Google Scholar]
  4. Z. Ma, P. Cooper, D. Daly, L. Ledo, Existing building retrofits: methodology and state-of-the-art, Energy Build. 55, 889 (2012) [CrossRef] [Google Scholar]
  5. EP, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (2010) [Google Scholar]
  6. European Council, Appendix: European Council Action Plan (2007–2009), in Bruss. Eur. Counc. 89 March 2007 Pres. Conclus, Bruxelles (2007) [Google Scholar]
  7. R. Roda, C. Monti, BolognaFiere, Salone internazionale dell'industrializzazione edilizia, in Costruire sostenibile: il Mediterraneo: 2001, Alinea, Firenze (2001) [Google Scholar]
  8. R. Banham, The architecture of the well-tempered environment (Architectural P, London, 1969) [Google Scholar]
  9. E. De Oliveira, S. Yannas, Energy and buildings for temperate climates: a Mediterranean regional approach, in Proc. Sixth Int. Plea Conf. Porto Portu. (1989) [Google Scholar]
  10. F. Calcerano, C. Cecchini, Passive cooling strategies in refurbishment of Mediterranean buildings: simulation analysis of thermal mass and natural ventilation combination, in Proc. 2nd IBPSA Italy Conf., 4–6 February, BSA 2015, Bozen, Bolzano, Italy (2015) [Google Scholar]
  11. EC, Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings, 2002 [Google Scholar]
  12. A. Prada, P. Baggio, M. Baratieri, P. Romagnoni, A. Gasparella, E. Bettanini, Consumi energetici e certificazione energetica: situazione estiva ed invernale in Italia e in Europa, in Energ. Lo Sviluppo Sostenibile, Dario Flaccovio Editore, Palermo (2008), pp. 1–6 [Google Scholar]
  13. M. D'Orazio, C. Di Perna, E. Di Giuseppe, The effects of roof covering on the thermal performance of highly insulated roofs in Mediterranean climates, Energy Build. 42, 1619 (2010) [CrossRef] [Google Scholar]
  14. L. Tronchin, K. Fabbri, Energy performance building evaluation in Mediterranean countries: comparison between software simulations and operating rating simulation, Energy Build. 40, 1176 (2008) [CrossRef] [Google Scholar]
  15. M. Santamouris, D. Asimakopoulos, Passive cooling of buildings (James & James Ltd, London, 1996) [Google Scholar]
  16. O.-H. Kwon, M.-H. Kim, A.-S. Choi, J.-W. Jeong, Energy saving potential of a hybrid ventilation system integrated with heat storage material, Energy Build. 57, 346 (2013) [CrossRef] [Google Scholar]
  17. P. Heiselberg, Principles of hybrid ventilation (Aalborg University, Aalborg, Denmark, 2002) [Google Scholar]
  18. IEA, IEA ECES Energy Conservation through Energy Storage (2012) [Google Scholar]
  19. B. Moujalled, R. Cantin, G. Guarracino, Comparison of thermal comfort algorithms in naturally ventilated office buildings, Energy Build. 40, 2215 (2008) [CrossRef] [Google Scholar]
  20. R.J. de Dear, G.S. Brager, Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energy Build. 34, 549 (2002) [CrossRef] [Google Scholar]
  21. J.F. Nicol, M.A. Humphreys, B.W. Olesen, A stochastic approach to thermal comfort – occupant behavior and energy use in buildings, in Tech. Symp. Pap. – 2004 Annu. Meet. Am. Soc. Heat. Refrig. Air-Cond. Eng. Nashv., TX, USA, 26–30 June 2004, Code 6500 (2004) [Google Scholar]
  22. O. Seppänen, W.J. Fisk, Association of ventilation system type with SBS symptoms in office workers, Indoor Air 12, 98 (2002) [CrossRef] [Google Scholar]
  23. J.E. Braun, Load control using building thermal mass, J. Sol. Energy Eng. 125, 292 (2003) [CrossRef] [Google Scholar]
  24. L. Stephan, A. Bastide, E. Wurtz, B. Souyri, Ensuring desired natural ventilation rate by means of optimized openings, in Proc. 11th Int. IBPSA Conf. – Build. Simul. 2009 BS 2009 Glasg., UK, July 2007 (2007) [Google Scholar]
  25. G. Augenbroe, Trends in building simulation, Build. Environ. 37, 891 (2002) [CrossRef] [Google Scholar]
  26. J.L.M. Hensen, Towards more effective use of building performance simulation in design, in Proc. 7th Int. Conf. Des. Decis. Support Syst. Archit. Urban Plan., 2–5 July Eindh, edited by J.P. Leeuwen, H.J.P. Van Timmermans (Eindh. Univ. Technol., 2004) [Google Scholar]
  27. N. Lechner, Heating, cooling, lighting: sustainable design methods for architects (John Wiley & Sons, Hoboken, NJ, 1991) [Google Scholar]
  28. T. Herzog, Deutsches Architekturmuseum, Thomas Herzog: Architektur + Technologie = architecture + technology (Prestel, Munchen, New York, 2002) [Google Scholar]
  29. S. Attia, M. Hamdy, W. O'Brien, S. Carlucci, Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design, Energy Build. 60, 110 (2013) [CrossRef] [Google Scholar]
  30. ECES (Energy Conservation Through Energy Storage Programme), Annual Report, IEA (International Energy Agency), 2012 [Google Scholar]
  31. J. Karlsson, Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort (Div. of Building Materials LTH, Lund University, 2012), http://lup.lub.lu.se/record/2518432 (accessed on: 2014/18/02) [Google Scholar]
  32. Y. Li, P. Xu, Thermal mass design in buildings – heavy or light? Int. J. Vent. 5, 143 (2006) [CrossRef] [Google Scholar]
  33. C.A. Balaras, The role of thermal mass on the cooling load of buildings. An overview of computational methods, Energy Build. 24, 1 (1996) [CrossRef] [Google Scholar]
  34. International PLEA Conference, International PLEA Organisation, Energy and buildings for temperate climates: a Mediterranean regional approach, in Proceedings of the Sixth International PLEA Conference, Porto, Portugal, 27–31 July 1988 (Published on behalf of the International PLEA Organisation by Pergamon Press, Oxford, New York, 1989), 1st ed. [Google Scholar]
  35. S. Szokolay, Passive and low energy design for thermal and visual comfort, in Passive Low Energy Ecotechniques, Proc. Third Int. PLEA Conf. Mex. City Mex., 6–11 August 1984 (1985), pp. 11–28 [Google Scholar]
  36. C. Diakaki, E. Grigoroudis, N. Kabelis, D. Kolokotsa, K. Kalaitzakis, G. Stavrakakis, A multi-objective decision model for the improvement of energy efficiency in buildings, Energy 35, 5483 (2010) [CrossRef] [Google Scholar]
  37. C.A. Balaras, K. Droutsa, E. Dascalaki, S. Kontoyiannidis, Heating energy consumption and resulting environmental impact of European apartment buildings, Energy Build. 37, 429 (2005) [CrossRef] [Google Scholar]
  38. M. Grosso, Il raffrescamento passivo degli edifici: concetti, precedenti architettonici, criteri progettuali, metodi di calcolo e casi di studio (Maggioli, Rimini, 1997) [Google Scholar]
  39. F. Tucci, Atlante dei sistemi tecnologici per l'architettura bioclimatica: ventilazione naturale negli edifici/Atlas of Technological Systems for Bioclimatic Architecture (Natural ventilation, Alinea Editrice, Firenze, 2012) [Google Scholar]
  40. F. Allard, Natural ventilation in buildings: a design handbook (James & James Ltd, London, 1998) [Google Scholar]
  41. T. Chenvidyakarn, Buoyancy effects on natural ventilation (Cambridge University Press, Cambridge, 2013) [CrossRef] [Google Scholar]
  42. P.F. Linden, The fluid mechanics of Natural Ventilation, Annu. Rev. Fluid Mech. 31, 201 (1999) [CrossRef] [Google Scholar]
  43. C.C. Siew, A.I. Che-Ani, N.M. Tawil, N.A.G. Abdullah, M. Mohd-Tahir, Classification of natural ventilation strategies in optimizing energy consumption in Malaysian office buildings, Procedia Eng. 20, 363 (2011) [CrossRef] [Google Scholar]
  44. C.M. Mak, J.L. Niu, C.T. Lee, K.F. Chan, A numerical simulation of wing walls using computational fluid dynamics, Energy Build. 39, 995 (2007) [CrossRef] [Google Scholar]
  45. A. Aldawoud, R. Clark, Comparative analysis of energy performance between courtyard and atrium in buildings, Energy Build. 40, 209 (2008) [CrossRef] [Google Scholar]
  46. N. Baker, M. Standeven, PASCOOL − Comfort Group − Final Report, 1995 [Google Scholar]
  47. A. Mahdavi, C. Pröglhöf, A model-based method for the integration of natural ventilation in indoor climate systems operation, in Proc. 9th Int. IBPSA Conf., BS 2005 Montr. Can., 15–18 August 2005 (2005) [Google Scholar]
  48. F. Calcerano, C. Cecchini, Mediterrean building refurbishment: thermal mass and natural ventilation simulated control, in Proc. 5th Ger. – Austrian IBPSA Conf. BAUSIM 2014 Hum. Centered Build., 22–24 Sept. 2014, Aachen, Ger. (2014), p. 8 [Google Scholar]
  49. B. Givoni, Effectiveness of mass and night ventilation in lowering the indoor daytime temperatures. Part I: 1993 experimental periods, Energy Build. 28, 25 (1998) [CrossRef] [Google Scholar]
  50. V. Corrado, I. Ballarini, S.P. Corgnati, N. Talà, Building Typology Brochure – Italy (Fascicolo sulla Tipologia Edilizia Italiana, 2012) [Google Scholar]
  51. L.D. Decanini, L. Liberatore, F. Mollaioli, Damage suffered by RC buildings during the 2009 L'Aquila earthquake, a general overview and a case study, in Proc. 14th Eur. Conf. Earthq. Eng. (2010) [Google Scholar]
  52. L. Sorrentino, E. Raglione, D. Liberatore, L.D. Decanini, Chiesa di San Biagio D'Amiternum a L'Aquila (Catalogo sismico locale e meccanismi di collasso, Textus, L'Aquila, 2011) [Google Scholar]
  53. M. Pasca, Il costruito italiano: tipologie, problematiche, interventi pre e post sisma, Tafter J. Esperienze E Strum. Cult. E Territ. (2012) [Google Scholar]
  54. F. Calcerano, L. Martinelli, Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption, Energy Build. 112, 234 (2016) [CrossRef] [Google Scholar]
  55. G. Lopardo, Un modello matematico di termoregolazione del corpo umano (Università degli studi di Salerno – Dipartimento di Ingegneria Meccanica, 2011), http://elea.unisa.it:8080/handle/10556/219 (accessed on: 2014/16/05) [Google Scholar]
  56. R. de Dear, G.S. Brager, Developing an adaptive model of thermal comfort and preference, Cent. Built Environ. (1998), http://escholarship.org/uc/item/4qq2p9c6 (accessed on: 2016/30/05) [Google Scholar]
  57. S.P. Corgnati, E. Fabrizio, M. Filippi, The impact of indoor thermal conditions, system controls and building types on the building energy demand, Energy Build. 40, 627 (2008) [CrossRef] [Google Scholar]
  58. R.H. Henninger, M.J. Witte, EnergyPlus Testing with ASHRAE 1052-RP Toolkit – Building Fabric Analytical Tests (Lawrence Berkeley Natl. Lab., USA, 2011) [Google Scholar]
  59. C. Morbitzer, Towards the integration of simulation in the Building Design Process, PHD thesis, Energy System Research Unit, University of Strathcylde, 2003 [Google Scholar]
  60. J.A. Clarke, Energy simulation in building design (Butterworth-Heinemann, Oxford, 2001) [Google Scholar]
  61. Q. Chen, Ventilation performance prediction for buildings: a method overview and recent applications, Build. Environ. 44, 848 (2009) [CrossRef] [Google Scholar]
  62. J. Hensen, Integrated building airflow simulation, in Adv. Build. Simul. (Spon Press, New York and London, 2003) [Google Scholar]
  63. A. Foucquier, F. Suard, S. Robert, L. Stephan, A. Jay, State of the art in building modelling and energy performances prediction: a review, Renew. Sustain. Energy Rev Renew. Sustain. Energy Rev. 23, 272 (2013) [CrossRef] [Google Scholar]
  64. R. Ramponi, B. Blocken, CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters, Build. Environ. 53, 34 (2012) [CrossRef] [Google Scholar]
  65. NREL, Energyplus Input Output Reference (2013), http://apps1.eere.energy.gov/buildings/energyplus/pdfs/inputoutputreference.pdf [Google Scholar]
  66. P. Cesaratto, M. De Carli, Studio comparativo tra fabbisogni energetici netti, lato edificio, sia per la climatizzazione estiva che per quella invernale di edifici residenziali e del settore terziario situati in climi differenti (ENEA, Roma, 2010), http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/fabbisogni-consumi-energetici/4-univ-pd-ob-b-1.pdf (accessed on: 2014/16/05) [Google Scholar]
  67. S. Sibilio, M. D'Agostino, M. Fatigati, M. Citterio, Valutazione dei consumi nell'edilizia esistente e benchmark mediante codici semplificati: analizi di edifici residenziali (ENEA, Roma, 2009) [Google Scholar]
  68. P. Caputo, G. Costa, V. Zanotto, Rapporto sulla validazione del modulo edificio – sistema elettrico (2011) [Google Scholar]
  69. M. Krzywinski, J.E. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, M.A. Marra, Circos: an information aesthetic for comparative genomics (Genome Res Publ. Adv., 2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.