Open Access
Issue
Sust. Build.
Volume 2, 2017
Article Number 7
Number of page(s) 10
Section Smart Monitors and Intelligent Building Controls
DOI https://doi.org/10.1051/sbuild/2017005
Published online 28 July 2017
  1. A. Thewes, S. Maas, F. Scholzen, D. Waldmann, A. Zürbes, Field study on the energy consumption of school buildings in Luxembourg, Energy Build. 68, 460 (2014) [CrossRef]
  2. L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build. 40, 394 (2008) [CrossRef]
  3. N. Nassif, A robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems, Energy Build. 45, 72 (2012) [CrossRef]
  4. W.J. Fisk, A.T. De Almeida, Sensor-based demand-controlled ventilation: a review, Energy Build. 29, 35 (1998) [CrossRef]
  5. N. Nassif, Supply air CO2-based demand-controlled ventilation for multi-zone HVAC systems, ASHRAE Trans. 118, 300 (2012)
  6. A. Vaccari, S. Samouhos, MIT enernet: correlating WiFi activity to human occupancy, in Proceedings of Healthy Buildings (2009)
  7. C. Martani, D. Lee, P. Robinson, R. Britter, C. Ratti, ENERNET: studying the dynamic relationship between building occupancy and energy consumption, Energy Build. 47, 584 (2012) [CrossRef]
  8. P. Lin, Q. Li, Q. Fan, X. Gao, S. Hu, A real-time location-based services system using WiFi fingerprinting algorithm for safety risk assessment of workers in tunnels, Math. Probl. Eng. 2014, 10 (2014)
  9. B.T. Rosenblum, Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings, University of California, Berkeley, 2012
  10. T.A. Nguyen, M. Aiello, Energy intelligent buildings based on user activity: a survey, Energy Build. 56, 244 (2013) [CrossRef]
  11. T. Teixeira, G. Dublon, A. Savvides, A survey of human-sensing: methods for detecting presence, count, location, track, and identity, ACM Comput. Surv. 5, 1 (2010)
  12. T. Yokoishi, J. Mitsugi, O. Nakamura, J. Murai, Room occupancy determination with particle filtering of networked pyroelectric infrared (PIR) sensor data, in Proc. IEEE Sensors (2012), pp. 3–6
  13. X. Guo, D. Tiller, G. Henze, C. Waters, The performance of occupancy-based lighting control systems: a review, Light. Res. Technol. 42, 415 (2010) [CrossRef]
  14. B. Roisin, M. Bodart, A. Deneyer, P. D'Herdt, Lighting energy savings in offices using different control systems and their real consumption, Energy Build. 40, 514 (2008) [CrossRef]
  15. T. Labeodan, K. Aduda, W. Zeiler, F. Hoving, Experimental evaluation of the performance of chair sensors in an office space for occupancy detection and occupancy-driven control, Energy Build. 111, 195 (2016) [CrossRef]
  16. T.R. Nielsen, C. Drivsholm, Energy efficient demand controlled ventilation in single family houses, Energy Build. 42, 1995 (2010) [CrossRef]
  17. S. Kar, P.K. Varshney, Accurate estimation of indoor occupancy using gas sensors, in ISSNIP 2009 – Proc. 2009 5th Int. Conf. Intell. Sensors, Sens. Networks Inf. Process. (2009), pp. 355–360
  18. Z. Sun, S. Wang, Z. Ma, In-situ implementation and validation of a CO2-based adaptive demand-controlled ventilation strategy in a multi-zone office building, Build. Environ. 46, 124 (2011) [CrossRef]
  19. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. ANSI/ASHRAE Standard 62.1-2010. Ventilation for Acceptable Indoor Air Quality (ASHRAE, Atlanta, GA, 2010)
  20. D. Calì, P. Matthes, K. Huchtemann, R. Streblow, D. Müller, CO2 based occupancy detection algorithm: experimental analysis and validation for office and residential buildings, Build. Environ. 86, 39 (2015) [CrossRef]
  21. W.J. Fisk, D.P. Sullivan, D. Faulkner, E. Eliseeva, CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings (Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2010), pp. 1–52
  22. S. Shrestha, G.M. Maxwell, Product Testing Report Supplement: Wall Amounted Carbon Dioxide (CO2) Transmitters, Test, No. March, pp. 1–17, 2010
  23. S. Emmerich, A. Persily, State-of-the-Art Review of CO2 Demand Controlled Ventilation Technology and Application, Natl. Inst. Stand. Technol., No. NISTIR 6729, 2001
  24. E. Azar, C. Menassa, Agent-based modeling of occupants and their impact on energy use in commercial buildings, J. Comput. Civ. Eng. 26, 506 (2011) [CrossRef]
  25. C.A. Webber, J.A. Roberson, R.E. Brown, C.T. Payne, B. Nordman, J.G. Koomey, Field Surveys of Office Equipment Operating Patterns, Environ. Prot., No. LBNL-46930, 2001 [CrossRef]
  26. M. Sanchez, C. Webber, R. Brown, J. Busch, M. Pinckard, Space heaters, computers, cell phone chargers: how plugged in are commercial buildings? in ACEEE Summer Study Energy Effic. Build. (2006), pp. 304–315
  27. M. Milenkovic, O. Amft, Recognizing energy-related activities using sensors commonly installed in office buildings, Procedia Comput. Sci. 19, 669 (2013) [CrossRef]
  28. K. Ng, Use of WiFi Sensor Network in Measuring Occupancy and People Circulation in Buildings, Ryerson University, 2016
  29. A. Motamedi, M.M. Soltani, A. Hammad, Localization of RFID-equipped assets during the operation phase of facilities, Adv. Eng. Inform. 27, 566 (2013) [CrossRef]
  30. N. Li, G. Calis, B. Becerik-Gerber, Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations, Autom. Constr. 24, 89 (2012) [CrossRef]
  31. K. Weekly, H. Zou, L. Xie, Q.S. Jia, A.M. Bayen, Indoor occupant positioning system using active rfid deployment and particle filters, in Proc. – IEEE Int. Conf. Distrib. Comput. Sens. Syst. DCOSS 2014 (2014), pp. 35–42 [CrossRef]
  32. H.M. Khoury, V.R. Kamat, Evaluation of position tracking technologies for user localization in indoor construction environments, Autom. Constr. 18, 444 (2009) [CrossRef]
  33. CISCO, Wi-Fi Location-Based Services 4.1 Design Guide, No. 6387 (CISCO Systems, CA, USA, 2008)
  34. V. Osa, J. Matamales, J.F. Monserrat, J. López, Localization in wireless networks: the potential of triangulation techniques, Wirel. Pers. Commun. 68, 1525 (2013) [CrossRef]
  35. A. LaMarca, E. De Lara, Synth. Lect. Mob. Pervasive Comput. 3, 1 (2008) [CrossRef]
  36. A. Sevtsuk, S. Huang, F. Calabrese, C. Ratti, Mapping the MIT campus in real time using WiFi, in Handb. Res. Urban Informatics Pract. Promise Real-Time City (IGI Global, USA, 2009)
  37. C.M. El Amine, O. Mohamed, B. Boualam, The implementation of indoor localization based on an experimental study of RSSI using a wireless sensor network, Peer-to-Peer Netw. Appl. 9, 795 (2016) [CrossRef]
  38. W. Mardini, Y. Khamayseh, A.A. Almodawar, E. Elmallah, Adaptive RSSI-based localization scheme for wireless sensor networks, Peer-to-Peer Netw. Appl. 9, 991 (2016) [CrossRef]
  39. K. Christensen, R. Melfi, B. Nordman, B. Rosenblum, R. Viera, K. Christensen, R. Melfi, Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces, Int. J. Commun. Netw. Distrib. Syst. 12, 4 (2014) [CrossRef]
  40. Z. Bakó-Biró, D.J. Clements-Croome, N. Kochhar, H.B. Awbi, M.J. Williams, Ventilation rates in schools and pupils' performance, Build. Environ. 48, 215 (2012) [CrossRef]
  41. F. Van Dijken, J.E.M.H. Van Bronswijk, J. Sundell, Indoor environment and pupils' health in primary schools, Build. Res. Inf. 34, 437 (2006) [CrossRef]
  42. V. De Giuli, O. Da Pos, M. De Carli, Indoor environmental quality and pupil perception in Italian primary schools, Build. Environ. 56, 335 (2012) [CrossRef]
  43. V. De Giuli, R. Zecchin, L. Salmaso, L. Corain, M. De Carli, Measured and perceived indoor environmental quality: Padua Hospital case study, Build. Environ. 59, 211 (2013) [CrossRef]
  44. Z.J. Yu, F. Haghighat, B.C.M. Fung, E. Morofsky, H. Yoshino, A methodology for identifying and improving occupant behavior in residential buildings, Energy 36, 6596 (2011) [CrossRef]
  45. C.M. Clevenger, J.R. Haymaker, M. Jalili, Demonstrating the impact of the occupant on building performance, J. Comput. Civ. Eng. 28, 99 (2014) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.