Issue |
Sust. Build.
Volume 6, 2023
Sustainability in the build environment
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 17 | |
Section | Sustainable Building Materials and Construction | |
DOI | https://doi.org/10.1051/sbuild/2023006 | |
Published online | 22 August 2023 |
- L. Capuano, International Energy Outlook 2018 (IEO2018), USS Energy Information Administration, Washington, DC, USA, 2018 [Google Scholar]
- E. Biyik, M. Araz, A. Hepbasli, M. Shahrestani, R. Yao, L. Shao, E. Essah, A.C. Oliveira, T. del Cano, E. Rico et al., A key review of building integrated photovoltaic (BIPV) systems, Eng. Sci. Technol. Int. J. 20, 833–858 (2017) [Google Scholar]
- M. Vasiliev, M., Nur-E-Alam, K. Alameh, Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation, Energies 12, 1080 (2019) [CrossRef] [Google Scholar]
- D. Moor, V. Rosenberg, M. Vasiliev, High transparency clear glass windows with large PV energy outputs, in: Proceedings of Challenging Glass Conference, Vol. 8, 2022 [CrossRef] [Google Scholar]
- T.E. Kuhn, C. Erban, M. Heinrich, J. Eisenlohr, F. Ennslen, D.H. Neuhaus, Review of technological design options for building integrated photovoltaics (BIPV), Energy Build. 231, 110381 (2021) [CrossRef] [Google Scholar]
- N. Martín-Chivelet, K., Kapsis, H.R. Wilson, V. Delisle, R. Yang, L. Olivieri et al., Building-integrated photovoltaic (BIPV) products and systems: a review of energy-related behavior, Energy Build. 262, 111998 (2022) [CrossRef] [Google Scholar]
- A. Taşer, B.K. Koyunbaba, T. Kazanasmaz, Thermal, daylight, and energy potential of building-integrated photovoltaic (BIPV) systems: a comprehensive review of effects and developments, Solar Energy 251, 171–196 (2023) [CrossRef] [Google Scholar]
- Z.R.K. Abojela, M.K. MatDesa, A.H. Sabry, Current prospects of building-integrated solar PV systems and the application of bifacial PVs, Front. Energy Res. 11, 1164494 (2023) [CrossRef] [Google Scholar]
- Y. Li, L. Li, W. Deng, D. Zhu, L. Hong, Building integrated photovoltaic (BIPV) development knowledge map: a review of visual analysis using CiteSpace, Buildings 13, 389 (2023) [CrossRef] [Google Scholar]
- C. Toledo, A. Scognamiglio, Agrivoltaic systems design and assessment: a critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns), Sustainability 13, 6871 (2021) [CrossRef] [Google Scholar]
- M.A. AlMamun, P. Dargusch, D. Wadley, N.A. Zulkarnain, A.A. Aziz, A review of research on agrivoltaic systems, Renew. Sustain. Energy Rev. 161, 112351 (2022) [CrossRef] [Google Scholar]
- A.V. Klokov, E.Y. Loktionov, Y.V. Loktionov, V.A. Panchenko, E.S. Sharaborova, A mini-review of current activities and future trends in agrivoltaics, Energies 16, 3009 (2023) [CrossRef] [Google Scholar]
- Clearvue Technologies website https://www.clearvuepv.com/frequently-asked-questions/ (accessed on 12 October 2022) [Google Scholar]
- M.G. Debije, P.P.C. Verbunt, Thirty years of luminescent solar concentrator research: solar energy for the built environment, Adv. Energy Mater. 2, 12–35 (2012) [CrossRef] [Google Scholar]
- M.G. Debije, V.A. Rajkumar, Direct versus indirect illumination of a prototype luminescent solar concentrator, Solar Energy 122, 334−340 (2015) [CrossRef] [Google Scholar]
- L. Desmet, A.J.M. Ras, D.K.G. de Boer, M.G. Debije, Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency, Opt. Lett. 37, 3087–3089 (2012) [CrossRef] [Google Scholar]
- A. Reinders, R. Kishore, L. Slooff, W. Eggink, Luminescent solar concentrator photovoltaic designs, Jpn. J. Appl. Phys. 57, 08RD10 (2018) [CrossRef] [Google Scholar]
- B. Zhang, G. Lyu, E.A. Kelly, R.C. Evans, Förster resonance energy transfer in luminescent solar concentrators, Adv. Sci. 9, 2201160 (2022) [CrossRef] [Google Scholar]
- T. Warner, K.P. Ghiggino, G. Rosengarten, A critical analysis of luminescent solar concentrator terminology and efficiency results, Solar Energy 246, 119−140 (2022) [CrossRef] [Google Scholar]
- Device for generating electric energy, US Patent US 1116 2302B2, https://patents.google.com/patent/US11162302B2/en [Google Scholar]
- M. Vasiliev, K. Alameh, M. Nur-E-Alam, Spectrally-selective energy-harvesting solar windows for public infrastructure applications, Appl. Sci. 8, 849 (2018) [CrossRef] [Google Scholar]
- M. Vasiliev, M. Nur-E-Alam, K. Alameh, Initial field testing results from building-integrated solar energy harvesting windows installation in Perth, Australia, Appl. Sci. 9, 4002 (2019) [CrossRef] [Google Scholar]
- H. Li, K. Wu, J. Lim, H.-J. Song, V.I. Klimov, Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 16157 (2016). [Google Scholar]
- M. Vasiliev, R. Alghamedi, M. Nur-E-Alam, K. Alameh, Photonic microstructures for energy-generatingclear glass and net-zero energy buildings, Sci. Rep. 6, 31831 (2016) [CrossRef] [Google Scholar]
- R. Alghamedi, M. Vasiliev, M. Nur-E-Alam, K. Alameh, Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows, Sci. Rep. 4, 6632 (2014) [CrossRef] [Google Scholar]
- A.M. Ramachandran, M.S. Sangeetha, A.S. Thampi, M. Singh, A. Asok, A comprehensive review on optics and optical materials for planar waveguide-based compact concentrated solar photovoltaics, Results Eng. 16, 100665 (2022) [CrossRef] [Google Scholar]
- Y. You, X. Tong, A.I. Channa, H. Zhi, M. Cai, H. Zhao, L. Xia, G. Liu, H. Zhao, Z. Wang, High-efficiency luminescent solar concentrators based on Composition-tunable Eco-friendly Core/shell quantum dots, Chem. Eng. J. 452, 139490 (2023) [Google Scholar]
- C. Yang, R.R. Lunt, Limits of visibly transparent luminescent solar concentrators, Adv. Opt. Mater. 5, 1600851 (2017) [CrossRef] [Google Scholar]
- S. Ren, C., Shou, S. Jin, G. Chen, S. Han, Z. Chen, X. Chen, S. Yang, Y. Guo, C.-C. Tu, Silicon quantum dot luminescent solar concentrators and downshifters with antireflection coatings for enhancing perovskite solar cell performance, ACS Photonics 8, 2392–2399 (2021) [CrossRef] [Google Scholar]
- M. Aghaei, R. Pelosi, W.W.H. Wong, T. Schmidt, M.G. Debije, A.H.M.E. Reinders, Measured power conversion efficiencies of bifacial luminescent solar concentrator photovoltaic devices of the mosaic series, Progr. Photovoltaics Res. Appl. 30, 726–739 (2022) [CrossRef] [Google Scholar]
- R.A.S. Ferreira, S.F.H. Correia, A. Monguzzi, X. Liu, F. Meinardi, Spectral converters for photovoltaics—what's ahead, Mater. Today 33, 105–121 (2020) [CrossRef] [Google Scholar]
- F. Zhang, J. Bao, C. Gao, Design and optimization of transparent scattering solar concentrator based on SiO2 aerogel, JUSTC 52, 2 (2022) [Google Scholar]
- E. Ela, V. Diakov, E. Ibanez, M. Heaney, Impacts of variability and uncertainty in solar photovoltaic generation at multiple timescales, Technical Report NREL/TP- 5500 -58274, NREL, Golden, Colorado, USA, 2013 [Google Scholar]
- M.A. Imteaz, A. Ahsan, Solar panels: real efficiencies, potential productions and payback periods for major Australian cities, Sust. Energy Technol. Assessm. 25, 119–125 (2018) [Google Scholar]
- M. Vasiliev, K. Alameh, M.A. Badshah, S.-M. Kim, M. Nur-E-Alam, Semi-transparent energy-harvesting solar concentrator windows employing infrared transmission-enhanced glass and large-area microstructured diffractive elements, Photonics 5, 25 (2018) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.