Open Access
Issue |
Sust. Build.
Volume 6, 2023
Sustainability in the build environment
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 10 | |
Section | Innovative Technologies and Integrated Systems for High Performance Buildings | |
DOI | https://doi.org/10.1051/sbuild/2023009 | |
Published online | 20 October 2023 |
- Environmental and Energy Study Institute (EESI). Fossil Fuels. July 22, 2021. Accessed 28/03/2022 at https://www.eesi.org/topics/fossil-fuels/description#:∼:text=Fossil%20fuels%E2%80%94including%20coal%2C%20oil,percent%20of%20the%20world's%20energy. [Google Scholar]
- World Economic Forum (WEF), Analysis: global CO2 emissions from fossil fuels hits record high in 2022. November 11th, 2022. https://www.weforum.org/agenda/2022/11/global-co2-emissions-fossil-fuels-hit-record-2022/ [Google Scholar]
- Environmental Protection Agency (EPA). Climate Change Indicators: Greenhouse Gases. https://www.epa.gov/climate-indicators/greenhouse-gases [Google Scholar]
- Climate Action Plan, Securing Our Future. Department of the Environment, Climate and Communications. Government of Ireland, 2021 [Google Scholar]
- Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T. I. A. S. No. 16–1104 [Google Scholar]
- IEA, Buildings, IEA, Paris, 2022. https://www.iea.org/reports/buildings, License: CC BY 4.0 [Google Scholar]
- W.H. Weber, J. Lambe, Luminescent greenhouse collector for solar radiation, In APPLIED OPTICS (Vol. 15, Issue 10), 1976 [Google Scholar]
- J.S. Batchelder, A.H. Zewai, T. Cole, Luminescent solar concentrators. 1: theory of operation and techniques for performance evaluation, Appl. Opt. 18, 3090–3110 (1979) [CrossRef] [Google Scholar]
- D. Axelrod, T. Burghardt, N. Thompson, Total internal reflection flourescence, Annu. Rev. Biophys. Bioeng. 247–268 (1984). Chapter 13 [CrossRef] [Google Scholar]
- A. Glenn, S. Chandra, S. McCormack, Validation of plasmonic luminescent solar concentrator modelling software, 8th World Conference on Photovoltaic Energy Conversion. Advanced Modeling and Characterization, pp. 457–461. 2BV.2.53.10.4229/WCPEC-82022-2BV.2.53 [Google Scholar]
- A. Sethi, A. Ortega, S. Chandra, S. McCormack, Outdoor performance of a plasmonic luminescent solar concentrator, 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 2020, pp. 1346–1348, doi: 10.1109/PV SC45281. 2020.9300851 [Google Scholar]
- A. Ortega, S. Chandra, S.J. McCormack, Design and characterization of a roof-mounted compound parabolic concentrator, in: A. Sayigh (Ed.), Sustainable Energy Development and Innovation, Innovative Renewable Energy, Springer, Cham 2022. https://doi.org/10.1007/978-3-030-76221-6_98 [Google Scholar]
- M. Rafiee, S. Chandra, H. Ahmed, K. Barnham, S. McCormack, Small and large scale plasmonically enhanced luminescent solar concentrator for photovoltaic applications: modelling, optimisation and sensitivity analysis, Opt. Express 29, 15031–15052 (2021) [CrossRef] [Google Scholar]
- A. Sethi, S. Chandra, H. Ahmed, S. McCormack, Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator. Sol. Energy Mater. Sol. Cells. 203, 110150 (2019) [CrossRef] [Google Scholar]
- F. Meinardi, F. Bruni, S. Brovelli, Luminescent solar concentrators for building-integrated photovoltaics, Nat. Rev. Mater. 2, 17072 (2017) [CrossRef] [Google Scholar]
- T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, Q. Zhang, Luminescent solar concentrator employing rare earth complex with zero self-absorption loss, Sol. Energy. 85, 2571–2579 (2011) [CrossRef] [Google Scholar]
- J.P. Nolan, D.S. Sebba, Surface-Enhanced Raman Scattering (SERS) Cytometry. Methods in Cell Biology, Academic Press 102, 515–532 (2011) [CrossRef] [Google Scholar]
- N. Kaur, A. Mahajan, V. Bhullar, D.P. Singh, V. Saxena, A.K. Debnath, D.K. Aswal, D. Devi, F. Singh, S. Chopra, Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes, RSC Advances 9, 20375–20384 (2019) [CrossRef] [Google Scholar]
- K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668–677 (2003) [CrossRef] [Google Scholar]
- D.K. Cai, A. Neyer, R. Kuckuk, H.M. Heise, Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication, Opt. Mater. 30, 11571161 (2008) [CrossRef] [Google Scholar]
- N.J. Fendinger, Polydimethylsiloxane (PDMS): environmental fate and effects, in N. Auner, J. Weis (Eds.), Organosilicon Chemistry IV 2000, https://doi.org/10.1002/9783527619917.ch103 [Google Scholar]
- D. Graiver, K.W. Farminer, R. Narayan, A review of the fate and effects of silicones in the environment, J. Polym. Environ. 11, 129–136 (2003) [CrossRef] [Google Scholar]
- M. Portnoi, C. Sol, C. Tummeltshammer, I. Papakonstantinou, Impact of curvature on the optimal configuration of flexible luminescent solar concentrators, Opt. Lett. 42, 2695–2698 (2017) [CrossRef] [Google Scholar]
- N.E. Stankova, P.A. Atanasov, Ru.G. Nikov, R.G. Nikov, N.N. Nedyalkov, T.R. Stoyanchov, Fukata, K.N. Kolev, E.I. Valova, J.S. Georgieva, St.A. Armyanov, Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing, Appl. Surf. Sci. 374, 96–103 (2016) [CrossRef] [Google Scholar]
- M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities—properties, modifications strategies, and applications, Prog. Polym. Sci. 83, 97–134 (2018) [CrossRef] [Google Scholar]
- M. Buffa, S. Carturan, M.G. Debije, A. Quaranta, G. Maggioni, Dye-doped polysiloxane rubbers for luminescent solar concentrator systems, Sol. Energy Mater. Solar Cells. 103, 114–118 (2012) [CrossRef] [Google Scholar]
- I. Carbone, K. Frawley, M. McCann, Flexible, front-facing luminescent solar concentrators fabricated from lumogen F Red 305 and polydimethylsiloxane, Int. J. Photoenergy. 2019, 9 (2019) [CrossRef] [Google Scholar]
- L. Desmet, A. Ras, D. de Boer, M. Debije, Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency, Opt. Lett. 37, 3087–3089 (2012) [CrossRef] [Google Scholar]
- G.D. Gutierrez, I. Coropceanu, M.G. Bawendi, T.M. Swager, A low reabsorbing luminescent solar concentrator employing π-conjugated polymers, Adv. Mater. 28, 497–501 (2016) [CrossRef] [Google Scholar]
- Z. Krumer, W. van Sark, R. Schropp, C. Donegá, Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration, Sol. Energy Mater. Sol. Cells. 167, 133–139 (2017) [CrossRef] [Google Scholar]
- M. Debije, M. Van, P. Verbunt, M. Kastelijn, R. van der Blom, D. Broer, C. Bastiaansen, Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors, Appl. Opt. 49, 745–751 (2010) [CrossRef] [Google Scholar]
- G. Iasilli, R. Francischello, P. Lova, S. Silvano, A. Surace, G. Pesce, M. Alloisio, M. Patrini, M. Shimizu, D. Comoretto, A. Pucci, Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors, Mater. Chem. Front. 3, 429–436 (2019) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.