Open Access
Issue
Sust. Build.
Volume 7, 2024
Article Number 4
Number of page(s) 13
Section Building and District Sustainable Energy Systems
DOI https://doi.org/10.1051/sbuild/2024005
Published online 08 November 2024
  1. P.S. Badal, R. Sinha, A multi-objective performance-based seismic design framework for building typologies, Earthq. Eng. Struct. Dyn. 51, 1343–1362 (2022) [CrossRef] [Google Scholar]
  2. J.S. Pan, N. Liu, S.C. Chu, T. Lai, An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems, Inf. Sci. 561, 304–325 (2020) [Google Scholar]
  3. Z. Serat, S.A.Z. Fatemi, S. Shirzad, Design and economic analysis of on-grid solar rooftop PV system using PVsyst software, Arch. Adv. Eng. Sci. 1, 63–76 (2023) [CrossRef] [Google Scholar]
  4. B. Lin, H. Chen, Y. Liu, Q. He, Z. Li, A preference-based multi-objective building performance optimization method for early design stage, Build. Simul. 14, 477–494 (2021) [CrossRef] [Google Scholar]
  5. T. Janus, S. Engell, Iterative process design with surrogate-assisted global flowsheet optimization, Chem. Eng. Technol. 93, 2019–2028 (2021) [Google Scholar]
  6. H. Yue, X. Jia, Application analysis of green building materials in urban three-dimensional landscape design, Int. J. Nanotechnol. 19, 817–829 (2022) [Google Scholar]
  7. A. Andiyan, Green architectural design concepts at mixed-use building retail office & FnB, Solid State Technol. 64, 6183–6191 (2021) [Google Scholar]
  8. Y. Zhou, J. Cai, Y. Xu, Indoor environmental quality and energy use evaluation of a three-star green office building in China with field study, J. Build. Phys. 45, 209–235 (2021) [CrossRef] [Google Scholar]
  9. L. Almeida, V.W.Y. Tam, K.N. Le, Y. She, Effects of occupant behavior on energy performance in buildings: a green and non-green building comparison, Engineering 27, 1939–1962 (2020) [Google Scholar]
  10. H.P.H. Anh, C.V. Kien, Optimal energy management of microgrid using advanced multi-objective particle swarm optimization, Eng. Comput. 37, 2085–280 (2020) [CrossRef] [Google Scholar]
  11. C. Zhi, L. Yiliang, H. Ke, X. Kai, Optimal design of a nuclear power plant condenser control system based on multi-objective optimization algorithm, Nucl. Technol. Radiat. Prot. 35, 95–102 (2020) [CrossRef] [Google Scholar]
  12. N.H. Trng, D.N. Dao, New hybrid between NSGA-III with multi-objective particle swarm optimization to multi-objective robust optimization design for Powertrain mount system of electric vehicles, Adv. Mech. Eng. 12, 85–84 (2020) [Google Scholar]
  13. G. Xu, K. Luo, G. Jing, X. Yu, X. Ruan, J. Song, On convergence analysis of multi-objective particle swarm optimization algorithm, Eur. J. Operat. Res. 286, 32–38 (2020) [CrossRef] [Google Scholar]
  14. C.L. Tsai, G. Fredrickson, Using particle swarm optimization and self-consistent field theory to discover globally stable morphologies of block copolymers, Macromolecules 55, 5249–5262 (2022) [CrossRef] [Google Scholar]
  15. I. Dagal, B. Akn, E. Akboy, Improved salp swarm algorithm based on particle swarm optimization for maximum power point tracking of optimal photovoltaic systems, Int. J. Energy Res. 46, 8742–8759 (2022) [CrossRef] [Google Scholar]
  16. I.B. Mansir, E.H.B. Hani, H. Ayed, C. Diyoke, Dynamic simulation of hydrogen-based zero energy buildings with hydrogen energy storage for various climate conditions, Int. J. Hydrog. Energy 47, 26501–26514 (2022) [CrossRef] [Google Scholar]
  17. Z. Qiao, W. Shan, N. Jiang, A.A. Heidari, H. Chen, Y. Teng, Gaussian bare-bones gradient-based optimization: towards mitigating the performance concerns, Int. J. Intell. Syst. 37, 3193–3254 (2022) [CrossRef] [Google Scholar]
  18. S. Choudhuri, S. Adeniye, A. Sen, Distribution alignment using complement entropy objective and adaptive consensus-based label refinement for partial domain adaptation, Artif. Intell. Appl. 1, 43–51 (2023) [Google Scholar]
  19. X.M. Long, Y.J. Chen, J. Zhou, Development of AR experiment on electric-thermal effect by open framework with simulation-based asset and user-defined input, Artif. Intell. Appl. 1, 52–57 (2023) [Google Scholar]
  20. S. Lim, F. Mémoli, Z. Smith, The Gromov-Hausdorff distance between spheres, Geometry Topology 27, 3733–3800 (2023) [CrossRef] [Google Scholar]
  21. L. Hu, Y. Yang, Z. Tang, Y. He, X. Luo, FCAN-MOPSO: an improved fuzzy-based graph clustering algorithm for complex networks with multi objective particle swarm optimization, IEEE Trans. Fuzzy Syst. 31, 3470–3484 (2023) [CrossRef] [Google Scholar]
  22. M.R. Rahimi, D. Makarem, S. Sarspy, S.A. Mahdavi, M.F. Albaghdadi, S.M. Armaghan, Classification of cancer cells and gene selection based on microarray data using MOPSO algorithm, J. Cancer Res. Clin. Oncol. 149, 15171–15184 (2023) [CrossRef] [Google Scholar]
  23. H. Tunga, D. Giri, A method of finding optimal number of clusters in a wireless network based on power efficiency using MOPSO, J. Decis. Anal. Intell. Comput. 3, 113–121 (2023) [CrossRef] [Google Scholar]
  24. R. Zhong, J. Yu, C. Zhang, M. Munetomo, SRIME: a strengthened RIME with Latin hypercube sampling and embedded distance-based selection for engineering optimization problems, Neural Comput. Appl. 36, 6721–6740 (2024) [Google Scholar]
  25. P. Monalisa, D. Satchidananda, J.A. Kumar, Multi-objective artificial bee colony algorithm in redundancy allocation problem, Int. J. Adv. Intell. Paradig. 25, 24–50 (2023) [Google Scholar]
  26. Z. Haber, H. Uguz, H. Hakli, Implementation of the land reallocation problem using NSGA-II and PESA-II algorithms: a case study in Konya/Turkey, Surv. Rev. 55, 385–395 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.