Issue
Sust. Build.
Volume 7, 2024
Sustainability in the build environment
Article Number 2
Number of page(s) 18
Section Sustainable Building Materials and Construction
DOI https://doi.org/10.1051/sbuild/2024002
Published online 24 June 2024
  1. I. Poza-Casado, P. Rodríguez-del-Tío, M. Fernandez-Temprano, M.-A. Padilla-Marcos, A. Meiss, An envelope airtightness predictive model for residential buildings in Spain, Build. Environ. 223, 109435 (2022) [CrossRef] [Google Scholar]
  2. J.P. Fine, J. Gray, X. Tian, M.F. Touchie, An investigation of alternative methods for determining envelope airtightness from suite-based testing in multi-unit residential buildings, Energy Build. 214, 109845 (2020) [CrossRef] [Google Scholar]
  3. Y. Ji, L. Duanmu, S. Hu, Measurement and analysis of airtightness safeguard measures for typical ultra-low energy buildings, Energy Built Environ. 5, 348–363 (2023) [Google Scholar]
  4. C. Carbonaro, Y. Cascone, S. Fantucci, V. Serra, M. Perino, M. Dutto, Energy assessment of a PCM-embedded plaster: embodied energy versus operational energy, Energy Procedia 78, 3210–3215 (2015) [CrossRef] [Google Scholar]
  5. S. Dardouri, S. Mankai, M.M. Almoneef, M.M.J. Sghaier, Energy performance based optimization of building envelope containing PCM combined with insulation considering various configurations, Energy Rep. 10, 895–909 (2023) [CrossRef] [Google Scholar]
  6. E. Tunçbilek, M. Arıcı, M. Krajcík, D. Li, S. Nizetic, A.M. Papadopoulos, Enhancing building wall thermal performance with phase change material and insulation: a comparative and synergistic assessment, Renew. Energy 218, 119270 (2023) [CrossRef] [Google Scholar]
  7. N.-Y. Joo, S.-Y. Song, Improvement of thermal insulation performance of precast concrete curtain walls for apartment buildings, Energy Build. 296, 113350 (2023) [CrossRef] [Google Scholar]
  8. Y. Zhang, X. Sun, M.A. Medina, Thermal performance of concrete masonry units containing insulation and phase change material, J. Build. Eng. 76, 107184 (2023) [CrossRef] [Google Scholar]
  9. S. Kim, J. Seo, H. Jeong, J. Kim, In situ measurement of the heat loss coefficient of thermal bridges in a building envelope, Energy Build. 256, 111627 (2022) [CrossRef] [Google Scholar]
  10. D. Borelli, P. Cavalletti, A. Marchitto, C. Schenone, A comprehensive study devoted to determine linear thermal bridges transmittance in existing buildings, Energy Build. 224, 110136 (2020) [CrossRef] [Google Scholar]
  11. J. Lu a, Y. Xue, Z. Wang, Y. Fan, Optimized mitigation of heat loss by avoiding wall-to-floor thermal bridges in reinforced concrete buildings, J. Build. Eng. 30, 101214 (2020) [CrossRef] [Google Scholar]
  12. S. Bergero, A. Chiari, The influence of thermal bridge calculation method on the building energy need: a case study, Energy Procedia 148, 1042–1049 (2018) [CrossRef] [Google Scholar]
  13. I. Garrido, S. Lagüela, P. Arias, J. Balado, Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings, Energy Build. 158, 1358–1367 (2018) [CrossRef] [Google Scholar]
  14. T. Theodosiou, K. Tsikaloudaki, S. Tsoka, P. Chastas, Thermal bridging problems on advanced cladding systems and smart building facades, J. Clean. Prod. 214, 62–69 (2019) [CrossRef] [Google Scholar]
  15. Morrison Hershfield limited, Building envelope thermal bridging guide, Research report, Toronto, ON, Canada, 2016 [Google Scholar]
  16. International Organisation for Standardization (ISO), Thermal bridges in building construction-linear thermal transmittance-simplified methods and default values,EN ISO 1468 3, Geneva, Switzerland, 2008 [Google Scholar]
  17. F. Asdrubali, G. Baldinelli, F. Bianchi, A quantitative methodology to evaluate thermal bridges in buildings, Appl. Energy 97, 365–373 (2012) [CrossRef] [Google Scholar]
  18. M. Bilardo, E. Fabrizio, From zero energy to zero power buildings: a new framework to define high-energy performance and carbon-neutral buildings, Sustain. Energy Technol. Assessments 60, 103521 (2023) [CrossRef] [Google Scholar]
  19. R.M. Palma, J.S. Ramos, M.C.G. Delgado, T.R.P. Amores, G. D’Angelo, S.A. Domínguez, Extending the concept of high-performance buildings to existing dwellings, Energy Build. 296, 113431 (2023) [CrossRef] [Google Scholar]
  20. European Parliament. Directive 2018/844/EU of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, Official Journal of the European Union 75–91 (2018) [Google Scholar]
  21. B. Moujalled, B. Kolsch, A. Melois, V.S Leprince, Quantitative correlation between buildings air permeability indicators: statistical analyses of over 400,000 measurements, Energy Build. 298, 113566 (2023) [CrossRef] [Google Scholar]
  22. M. Pinto, J. Viegas, V.P. de Freitas, Air permeability measurements of dwellings and building components in Portugal, Build. Environ. 46, 2480–2489 (2011) [CrossRef] [Google Scholar]
  23. J. Hu, Z. Liu, G. Ma, G. Zhang, Z. Ai, Air infiltration and related building energy consumption: a case study of office buildings in Changsha, China, J. Build. Eng. 74, 106859 (2023) [CrossRef] [Google Scholar]
  24. NF EN 1026, Windows and doors-air permeability- test method, National standards and national normative documents, 2016 [Google Scholar]
  25. Technical standard 1, Measuring air permeability of building envelopes, The Air Tightness Testing and Measurement Association (ATTMA), 2007, Issue 2 [Google Scholar]
  26. A. Kirimtat, O. Krejcar, A review of infrared thermography for the investigation of building envelopes: advances and prospects, Energy Build. 176, 390–406 (2018) [CrossRef] [Google Scholar]
  27. M. O’Grady, A.A. Lechowska, A.M. Harte, Infrared thermography technique as an in-situ method of assessingheat loss through thermal bridging, Energy Build. 135, 20–32 (2017) [CrossRef] [Google Scholar]
  28. A. Kylili, P.A. Fokaides, P. Christou, S.A. Kalogirou, Infrared thermography (IRT) applications for building diagnostics: a review, Appl. Energy 134, 531–549 (2014) [CrossRef] [Google Scholar]
  29. M. O’Grady, A.A. Lechowska, A.M. Harte, Infrared thermography technique as an in-situ method of assessing the heat loss through thermal bridging, Energy Build. 135, 20–32 (2017) [CrossRef] [Google Scholar]
  30. X. Lu, A. Memari, Application of infrared thermography for in-situ determination of building envelope thermal properties, J. Build. Eng. 26, 100885 (2019) [CrossRef] [Google Scholar]
  31. G. Ferreira et al., Experimental analysis of the infrared thermography for the thermal characterization of a building envelope, Defect Diffus. Forum 326–328, (2012) [Google Scholar]
  32. A. Kylili, P.A. Fokaides, P. Christou, S.A. Kalogirou, Infrared thermography (IRT) applications for building diagnostics: a review, Appl. Energy 134, 531–549 (2014) [CrossRef] [Google Scholar]
  33. C.A. Balaras, A.A. Argiriou, Infrared thermography for building diagnostics, Energy Build. 34, 171–183 (2002) [CrossRef] [Google Scholar]
  34. M. Fox, S. Goodhew, P. De Wilde, Building defect detection, external versus internal thermography, Build. Environ. 105, 317–331 (2016) [CrossRef] [Google Scholar]
  35. M. O’Grady, A. Agnieszka Lechowska, A.M. Harte, Application of infrared thermography technique to the thermal assessment of multiple thermal bridges and windows, Energy Buid. 168, 347–362 (2018) [Google Scholar]
  36. G. Baldinelli, F. Bianchi, A. Rotili et al., A model for the improvement of thermal bridges quantitative assessment by infrared thermography, Appl. Energy 211, 854–864 (2018) [CrossRef] [Google Scholar]
  37. Z. Shen, A.L. Brooks, Y. He, S.S. Shrestha, H. Zhou, Evaluating dynamic thermal performance of building envelope components using small-scale calibrated hot box tests, Energy Build. 251, 111342 (2021) [CrossRef] [Google Scholar]
  38. F. Bianchi, Al. Pisello, G. Baldinelli, F. Asdrubali, Infrared thermography assessment of thermal bridges in building envelope: experimental validation in a test room setup, Sustainability 6, 7107–7120 (2014) [CrossRef] [Google Scholar]
  39. E. Bauer, E. Pavón, E. Barreira, E.K. De Castro, Analysis of building facade defects using infrared thermography: laboratory studies, J. Build. Eng. 6, 93–104 (2016) [CrossRef] [Google Scholar]
  40. L. Zalewski, S. Lassue, D. Rousse, K. Boukhalfa, Experimental and numerical characterization of thermal bridges in prefabricated building walls, Energy Conv. Manag. 51, 2869–2877 (2010) [CrossRef] [Google Scholar]
  41. K. Wakili, H. Simmler, T. Frank, Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements, Energy Build. 39, 76–81 (2007) [CrossRef] [Google Scholar]
  42. A. Marshal et al., Variations in the U-value measurement of a whole dwelling using infrared thermography under controlled conditions, Buildings 8, 46 (2018) [CrossRef] [Google Scholar]
  43. I. Nardi et al., U-value assessment by infrared thermography: a comparison of different calculation methods in a Guarded Hot Box, Energy Build. 122, 211–217 (2016) [CrossRef] [Google Scholar]
  44. B. Tejedor, E. Barreira, R.M.S.F. Almeida, M. Casals, Automated data-processing technique: 2D map for identifying the distribution of the U-value in building elements by quantitative internal thermography, Autom. Constr. 122, 103478 (2021) [CrossRef] [Google Scholar]
  45. B. Tejedor, E. Barreira, R.M.S.F. Almeida, M. Casals, Thermographic 2D U-value map for quantifying thermal bridges in building façades, Energy Build. 224, 110176 (2020) [CrossRef] [Google Scholar]
  46. R. Albatici, A.M. Tonelli, M. Chiogna, A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance, Appl. Energ. 141, 218–228 (2015) [CrossRef] [Google Scholar]
  47. P.A. Fokaides, S.A. Kalogirou, Application of infrared thermography for the determination of the overall heat transfer coefficient (U-value) in building envelopes, Appl. Energy 88, 4358–4365 (2011) [CrossRef] [Google Scholar]
  48. B. Mobaraki, F.J.C. Pascual, F. Lozano-Galant, J.A. Lozano-Galant, R.P. Soriano, In situ U-value measurement of building envelopes through continuous low-cost monitoring, Case Stud. Therm. Eng. 43, 102778 (2023) [CrossRef] [Google Scholar]
  49. N.P. Avdelidis, A. Moropoulou, Emissivity considerations in building thermography, Energy Build. 35, 663–667 (2003) [CrossRef] [Google Scholar]
  50. D. Especel, S. Matteı, Total emissivity measurements without use of an absolute reference, Infrared Phys. Technol. 37, 777–784 (1996) [CrossRef] [Google Scholar]
  51. S. Marinetti, P.G. Cesaratto, Emissivity estimation for accurate quantitative thermography, NDT&E Int. 51, 127–134 (2012) [CrossRef] [Google Scholar]
  52. FLIR Systems, ThermaCAM B2: operator’s manual, Flir Systems, Sweden, 2005 [Google Scholar]
  53. FLIR, Thermal imaging guidebook for building and renewable energy applications, 2018 [Google Scholar]
  54. EN ISO 10211, Thermal bridges in building construction heat flow and surface temperatures detailed calculations, 2017 [Google Scholar]
  55. A. Capozzoli, A. Gorrino, V. Corrado, A building thermal bridges sensitivity analysis, Appl. Energy 107, 229–243 (2013) [CrossRef] [Google Scholar]
  56. J. Hallik, T. Kalamees, The effect of flanking element length in thermal bridge calculation and possible simplifications to account for combined thermal bridges in well insulated building envelopes, Energy Build. 252, 111397 (2021) [CrossRef] [Google Scholar]
  57. H. Ge, F. Baba, Effect of dynamic modeling of thermal bridges on the energy performance of residential buildings with high thermal mass for cold climates, Sustain. Cities Soc. 34, 250–263 (2017) [CrossRef] [Google Scholar]
  58. S. Isokorb, Retrieved from: Thermal bridging guide, September (2018) [Google Scholar]
  59. V Harish, A. Kumar, A review on modeling and simulation of building energy systems, Renew. Sustain. Energy Rev. 56, 1272–1292 (2016) [CrossRef] [Google Scholar]
  60. A. Alhawari, P. Mukhopadhyaya, Thermal bridges in buildings envelopes an overview of impacts and solutions, Int. Rev. Appli. Sci. Eng. 9, 31–40 (2018) [Google Scholar]
  61. S. Aghasizadeh, B.M. Kari b, R. Fayaz, Thermal performance of balcony thermal bridge solutions in reinforced concrete and steel frame structures, J. Build. Eng. 48, 103984 (2022) [CrossRef] [Google Scholar]
  62. I . Susorova, B. Stephens, B. Skelton, The effect of balcony thermal breaks on building thermal and energy performance: field experiments and energy simulations in Chicago, IL, Buildings 1–24 (2019) [Google Scholar]
  63. J.H. Lienhard, A heat transfer textbook, fifth edition, Phlogiston Press, 2019 [Google Scholar]
  64. N. Norris, M. Lawton, P. Roppel, The concept of linear and point transmittance and its value in dealing with thermal bridges in building enclosures,Engineering, Corpus ID: 174771721, 2012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.